Error estimates for periodic homogenization with non-smooth coefficients
نویسندگان
چکیده
In this paper we present new results regarding the H1 0 -norm error estimate for the classical problem in homogenization using suitable boundary layer correctors. Compared with all the existing results on the subject, which assume either smooth enough coefficients or smooth data, we use the periodic unfolding method and propose a new asymptotic series to approximate the solution uε with an error estimate which holds true for nonsmooth coefficients and general data.
منابع مشابه
Flux Norm Approach to Homogenization Problems with Non-separated Scales
We consider divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general ...
متن کاملFlux Norm Approach to Homogenization Problems with Non-separated Scales Leonid Berlyand and Houman Owhadi
We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L∞(Ω), Ω ⊂ R) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most gener...
متن کامل2 00 9 Flux norm approach to homogenization problems with non - separated scales
We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most g...
متن کامل. A P ] 1 3 Ju l 2 00 9 Flux norm approach to homogenization problems with non - separated scales
We consider divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general ...
متن کاملTwo-sided estimates of the modeling error for elliptic homogenization problems
In this paper, we derive new two-sided estimates of modeling errors for linear elliptic boundary value problems with periodic coefficients solved by homogenization method. Our approach is based on the concept of functional a posteriori error estimation. The estimates are obtained for the energy norm and use solely the global flux of the non-oscillatory solution of the homogenized model and solu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Asymptotic Analysis
دوره 54 شماره
صفحات -
تاریخ انتشار 2007